

Manual de Operação e Instalação

Conversor, Indicador e Transmissor de Vazão Eletromagnético

Cod: 073AA-067-122M - Rev. E

Série **PROBAT**

INCONTROL IND. E COM. DE MEDIDORES DE VAZÃO E NÍVEL LTDA.

R. João Serrano, 250 - CEP 02551-060 - SP- Tel.: (11) 3488.8999 - WhatsApp: (11) 9.9382-6570 e-mail: vendas@incontrol.ind.br - Visite o site: www.incontrol.ind.br

ÍNDICE

1 INTRODUÇAO	3
2 ESPECIFICAÇÕES	4
3 TABELA DE CODIFICAÇÃO DE MODELO	
4 INSTALAÇÃO	5
4.1 ATERRAMENTO	5 5
5 CONEXÕES ELÉTRICAS	
5.1 BORNES DE LIGAÇÃO	
6 OPERAÇÃO	5
6.1 DISPLAY 6.2 FUNÇÕES DO DISPLAY 6.3 FUNÇÕES DAS TECLAS	6
7 PROGRAMAÇÃO DA CONFIGURAÇÃO	6
7.1 PARAMETRIZAÇÃO7.2 DESCRIÇÃO DE TELAS DE PARAMETRIZAÇÃO	6 7
8 AJUSTE DO ZERO	9
9 BATERIA	9
9.1 CUIDADOS COM A BATERIA 9.2 STATUS DA BATERIA 9.3 TROCA DAS BATERIAS	10
10 ANEXOS	11
11 CERTIFICADO DE GARANTIA	22

1 INTRODUÇÃO

A série PROBAT de computadores de vazão é a unidade eletrônica dos medidores de vazão eletromagnéticos totalmente microprocessada e com uma programação simples e amigável. Durante a parametrização na programação, as opções são facilmente selecionadas através do seu teclado frontal.

As unidades de vazão instantânea e totalização são programáveis independentemente.

Algumas características oferecidas são opcionais, portanto atentar para o código do modelo adquirido para confirmar as opções existentes no seu equipamento.

Ler cuidadosamente o manual antes da sua instalação e operação, atentar para os detalhes de montagem, conexão elétrica, parametrização e start-up para obter do seu equipamento o máximo em performance e operacionalidade.

Modelo Integral

2 ESPECIFICAÇÕES

Eletrônica	Microprocessada				
	Indicador de vazão instantânea, totalizador e transmissor				
Funções	Sentido de fluxo bidirecional				
	Comunicação serial				
Indicações	Display de cristal líquido com 8 caracteres				
	Teclado com 4 teclas. Sendo:				
	Tecla MENU : utilizada para parametrização				
Programações	➤ Tecla ▲ : incrementa o dígito e troca de opção no menu				
	➤ Tecla ౮ : desloca o cursor à esquerda				
	Tecla ENTER : confirma ou aceita valor				
Saída Pulso/freq.	Saída transistor NPN "isolado"				
Salua Puiso/ITeq.	Tensão e corrente max. 24 VCC e 20 mA				
Comunicação serial	RS485 (MODBUS RTU)				
Alimentação	Pack de baterias de litio – (3 x ER34615 - 19Ah)				
Temperatura	-30° a 50°C				
Umidade relativa	10 a 90 % URA				
Material do invólucro	ABS + 20% fibra de vidro				
Grau de proteção	IP67 ou IP68, montagem integral ao medidor				

NOTA: "Algumas funções são opcionais. Conferir o código do modelo adquirido".

3 TABELA DE CODIFICAÇÃO DE MODELO

Conversor eletrônico de vazão							
PROBAT							
Ali					18 a 36 VCC		
Alimentação	8				Bateria (3 x 3.6V)		
Comunicação	Comunicação coriel		2		RS 485 / MODBUS		
Comunicação	Comunicação serial				HART		
	Grau de proteção			Α	Remoto, sobrepor uso ao tempo IP67 em alumínio		
				H Integrado ao medidor, IP67 em ABS + 20% de fibra de vidro			
Grau de pro				I	Integrado ao medidor, IP68 em ABS + 20% de fibra de vidro		
			J Integrac		Integrado ao medidor, IP67 em alumínio (para modelos VMF, VMW, VMK)		
				L Integrado ao medidor, IP68 em alumínio resinado de fábrica (para modelos VMF, VMW, VMK)			

Evennler	8	Bateria (3 x 3.6V)
Exemplo: PROBAT-82H	2	Comunicação Serial MODBUS
PRODAT-02H	Н	Integrado ao medidor, IP67 em ABS (para modelos VMF, VMW, VMK, VMP)

4 INSTALAÇÃO

A instalação da unidade eletrônica do medidor de vazão é bastante simples, devendo obedecer às especificações e as recomendações abaixo:

4.1 ATERRAMENTO

A unidade eletrônica deve ser aterrada, com nível de aterramento para instrumentação, melhor do que 10 Ohm. Não utilizar o terra da alimentação de corrente alternada para este fim.

A eletrônica utiliza o terra como referência do sinal, portanto o bom funcionamento e desempenho do seu medidor de vazão dependem de um bom aterramento.

4.2 CABO

O cabo recomendado para sinal de saída do medidor até a unidade de controle é um cabo duplo com blindagem trançada AWG 20 para distâncias até 50 metros e AWG 18 para distâncias maiores.

O cabo não deve possuir emendas, portanto recomenda-se fazer uma medição prévia do comprimento do cabo na sua instalação.

A malha de blindagem do cabo deve ser aterrada somente do lado da unidade eletrônica, deixando aberta e isolada do lado do sensor.

Obedecer às recomendações de distâncias mínimas entre cabos (de 30 a 40 cm), para lançamentos de cabos de sinal, em relação a cabos de força ou fontes geradoras de induções ou ruídos eletromagnéticos.

Os cabos devem ter uma instalação rígida, devem ser fixados e protegidos, ou passar dentro de conduítes.

4.3 PROTEÇÃO MECÂNICA

Mesmo no caso do equipamento com proteção IP65, em se tratando de instrumento eletrônico microprocessado, é necessária a instalação de uma proteção contra os raios solares diretos e intempéries.

5 CONEXÕES ELÉTRICAS

5.1 BORNES DE LIGAÇÃO

As conexões elétricas devem obedecer ao diagrama mostrado no Anexo Conexão Elétrica. Atentar para o modelo adquirido, pois algumas ligações só estão presentes com as opções solicitadas.

6 OPERAÇÃO

6.1 DISPLAY

O display da série PROBAT é de cristal líquido com 8 caracteres.

6.2 FUNÇÕES DO DISPLAY

No modo indicação de vazão instantânea o operador pode visualizar os valores de totalização pressionando a tecla ▲.

Através da tecla MENU é possível iniciar a parametrização, onde são utilizadas as teclas restantes para a navegação.

6.3 FUNÇÕES DAS TECLAS

- MENU Quando estiver no modo indicação, aciona o modo parametrização. No modo parametrização são definidas todas as unidades de trabalho, tipo de saídas etc., que serão descritas no item descrição de telas.
- U Tecla que desloca o cursor a ser programado uma casa à esquerda.
- **ENTER** Utilizada para confirmar o valor mostrado no display como válido e gravá-lo na memória.

7 PROGRAMAÇÃO DA CONFIGURAÇÃO

7.1 PARAMETRIZAÇÃO

Para o modo parametrização, após energizar o instrumento aparecerá uma tela de apresentação. Ele entrará no modo indicação pressionando a tecla MENU. O instrumento pedirá que o operador entre com uma senha (para maior segurança). Esta senha é fornecida junto com o instrumento. Após confirmada esta senha o instrumento estará no modo parametrização.

Caso a senha não esteja correta, o instrumento exibirá a mensagem: "Senha Incorreta" e retornará ao modo indicação.

Obs.: A senha impede que usuários não autorizados tenham acesso à parametrização e atribuam dados incorretos à parametrização.

As senhas fornecidas de fábrica são:

- Para entrar em parâmetros: 4444.
- Para efetuar o auto-ajuste do zero: 5555.

Ao pressionar a tecla ENTER no menu de configuração se alterna o parâmetro exibido no display. Pressionando **A** ou **O** é exibido o valor deste parâmetro. Quando for necessário entrar com um valor, deve-se pressionar novamente uma destas duas teclas.

A tecla ♂ desloca o cursor de edição e a tecla ▲ incrementa o valor do dígito e seleciona a posição do ponto decimal. Assim que o número estiver correto, confirmá-lo teclando ENTER.

7.2 DESCRIÇÃO DE TELAS DE PARAMETRIZAÇÃO

A seguir está a descrição de cada tela de configuração presente no equipamento PROBAT:

• **Senha:** nesta tela o usuário deve optar por dois tipos de senhas, onde cada uma delas corresponde a uma operação. Estas senhas são configuradas de fábrica e não podem ser modificadas pelo usuário.

A senha "4444" é utilizada para dar início à parametrização ou para resetar o totalizador. Aperte a tecla "ENTER" para confirmar.

A senha "5555" é utilizada para a dar início à calibração do auto-zero do medidor de vazão. Aperte a tecla "ENTER" para confirmar.

• **Unidade de vazão:** neste parâmetro o usuário deverá escolher o tipo de unidade da vazão instantânea.

→ LPS	→ GPH
→ LPM	→ ft3/s
→ LPH	→ ft3/min
→ m3/s	→ ft3/h
→ m3/min	→ kg/s
→ m3/h	→ kg/min
→ ml/s	→ kg/h
→ ml/min	→ ton/s
→ ml/h	→ ton/min
→ GPS	→ ton/h
→ GPM	

• **Unidade de totalização:** neste parâmetro o usuário deverá escolher o tipo de unidade de totalização.

→ L	→ ft3
→ m3	→ kg
→ ml	→ ton
→ galão	

- Unidade de densidade: escolher a unidade de densidade do líquido na condição de processo.
 - → g/cm3
 - \rightarrow kg/m3
 - → lb/ft3
- **Densidade:** neste parâmetro deverá ser inserido o valor da densidade do líquido utilizado na condição de processo.
- Damping: ajusta o atraso na indicação de vazão no display. Isso é utilizado em casos onde a variação da vazão é muito grande ou se você desejar ter uma indicação mais estável. Pode variar de 1 a 99 s. Lembre-se que o valor do atraso é dado em segundos.

 CUT-OFF: nesta tela o usuário deverá inserir o valor mínimo de vazão que o PROBAT indicará, ou seja, mostrará no display. Caso o valor identificado pelo PROBAT seja menor que o valor inserido no CUT-OFF, o PROBAT irá desprezá-lo e não o mostrará no display;

- **Diâmetro nominal:** Valor em mm do diâmetro nominal do medidor de vazão.
- Fator K: Constante FK do medidor de vazão.
- Fator K1: Constante FK1 do medidor de vazão.
- Fator de correção: Constante para correção e aferição do medidor de vazão. O valor padrão é 1.
- Fluxo invertido: Este parâmetro é utilizado quando o medidor de vazão foi instalado contrário ao sentido de fluxo do medidor (inverte o valor da vazão).
- Saída frequência: habilita ou não a saída frequência.
- Vazão máxima: Deve-se programar o valor da vazão proporcional à frequência de saída de 1kHz sendo que para a vazão igual a 0 (zero) a frequência é igual a 0 (zero). Respeitar as unidades indicadas.
- Saída pulsos: habilita ou não a saída pulsos.
- Largura de pulso: o usuário poderá configurar tempo da largura de pulsos de saída para compatibilizar com o equipamento que recebe o sinal, podendo ser programado de 10ms a 1s (múltiplos de 10ms).
- Saída de pulsos: para configurar o totalizador utilizado pela saída de pulsos.
 - → T DIR Totalizador direto;
 - → T INV totalizador inverso.
- Fator de saída de pulso: o usuário deverá configurar a razão da saída de pulsos em função do volume totalizado, ou seja, a quantidade de volume totalizado para cada pulso na saída.
 - → Exemplo "10Kg/pulsos" Significa que cada vez que o valor do totalizador indicar mais 10Kg será enviado um pulso na saída.
- **Intervalo Excitação:** Configura o tempo entre as excitações das bobinas, vide anexo IV.
- End MODBUS: Configurar o endereço do equipamento para uma rede de comunicação no protocolo MODBUS. O valor deve estar entre 1 e 247.
- **Zera totalizador:** utilizado para zerar o totalizador do equipamento.

O equipamento também dispõe da função de autodiagnostico, informando pelo display os seguintes avisos:

- → Bobina Problema com a bobina do medidor de vazão;
- → Erro Ent Problema de instalação, aterramento, seção não cheia, ruído elétrico, baixa condutividade do fluido, eletrodos isolados devido ao depósito de material na região dos eletrodos.

8 AJUSTE DO ZERO

O auto-ajuste do zero do medidor é necessário quando o medidor for instalado pela primeira vez ou sempre que for trocado de local de instalação. Para realizar o auto-ajuste é necessário que o medidor esteja instalado em seu lugar definitivo e tanto a instalação mecânica quanto a elétrica, completa; a tubulação deve estar fechada (sem vazão) e estar cheia (isenta de ar); o PROBAT deve estar ligado há pelo menos 1 hora; No teclado do PROBAT entrar na opção menu com a senha 5555, auto-zero; o PROBAT fará o auto-ajuste do zero; quando aparecer a mensagem "calibração concluída" o PROBAT estará pronto para o funcionamento.

9 BATERIA

O PROBAT utiliza um pack de baterias com as seguintes especificações:

- Pack composto por 3 baterias;
- ER34615;
- Lítio (Li-SOCI2);
- Tensão nominal 3,6V;
- Capacidade 19Ah;
- Temperatura de operação -60°C a 85°C.

9.1 CUIDADOS COM A BATERIA

As baterias de íons de lítio são facilmente corrompidas, inflamáveis e podem até explodir em altas temperaturas. Nunca a deixe exposta diretamente à luz do sol, curto-circuitos ou a abertura do invólucro da bateria também podem fazer com que a bateria se inflame.

Importante:

- Não recarregue, esmague ou desmonte;
- Não expor temperaturas acima de 100 °C
- Não incinere ou exponha a bateria à água.

9.2 STATUS DA BATERIA

O PROBAT monitora a bateria continuamente e seu status é mostrado no display a cada 30 segundos da seguinte forma:

- → BAT 100 A bateria está com toda a carga;
- → BAT 75 A bateria está com quase toda a carga;
- → BAT 50 A bateria está com a metade da carga;
- → BAT 25 A bateria está quase descarregada;
- → BAT FRAC Neste caso a bateria está com sua capacidade abaixo de 7% e deve ser trocada o mais breve possível.

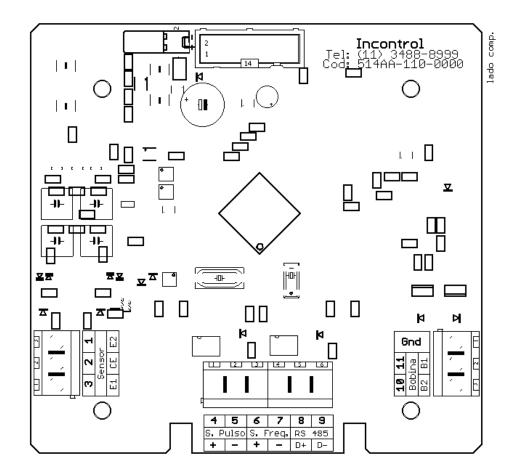
9.3 TROCA DAS BATERIAS

Caso seja necessário trocar a bateria observar o tipo de bateria se é similar a utilizada no equipamento.

Observar a polaridade das baterias conforme a figura abaixo.

PROBAT

10 ANEXOS

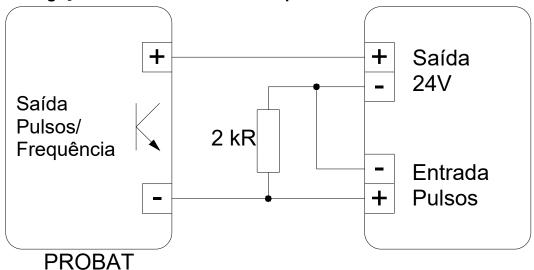

- I. Desenho de conexão elétrica;
- II. Ligação do sinal digital Pulsos/Frequência;
- III. Cuidados com o fechamento do invólucro;
- IV.Protocolo MODBUS;
- V. Automação da bateria;
- VI.Curva de performance;
- VII.Solução de problemas.

Aviso:

Este manual poderá ser alterado sem prévio aviso, pois os dados desse documento são revisados periodicamente e as correções necessárias serão consideradas nas próximas versões. Agradecemos por qualquer tipo de sugestão que venha contribuir para a melhoria deste documento.

ANEXO I - DESENHO DE CONEXÃO ELÉTRICA

Bornes do conversor de vazão PROBAT


Identificação dos bornes

_							
1	E2	Eletrodo2					
2	CE	terra	Sensor				
3	E1	Eletrodo1					
4	+	Positivo	Saída Pulsos				
5	-	Negativo	Salua Puisos				
6	+	Positivo	Saída				
7	-	Negativo	Frequência				
8	D+	data +	Comunicação				
9	D-	data -	serial				
10	B2	Bobina2	Bobina				
11	B1	Bobina1	Dobina				
		GND					

ANEXO II – LIGAÇÃO DO SINAL DIGITAL PULSOS/FREQUÊNCIA

O computador de vazão PROBAT possui saída digital de pulsos e frequência configurada como passiva.

Ligação da saída de Pulsos / Frequência:

Saída Pulsos - Tipo: NPN

Tensão máxima: 24 VCC Corrente máxima: 20 mA

ANEXO II - CUIDADOS COM O FECHAMENTO DO INVÓLUCRO

Para garantir o grau de proteção do PROBAT é recomendado os seguintes cuidados:

- 1. Realizar todas as conexões elétricas internas e realizar o aperto do prensa-cabo suficiente para que não haja infiltração.
- 2. Antes de fechar a caixa do conversor, garantir que todas as superfícies em contato com a vedação estejam limpas e livres de qualquer impureza;
- 3. Posicione a tampa do PROBAT alinhado com a base, realize o aperto dos 4 parafusos de maneira uniforme e intercalados com o auxílio de uma chave de fenda ou philips.
- 4. A fim de prolongar a vida útil do equipamento sempre que possível proteger o equipamento contra os raios solares diretos e intempéries.
- 5. Verificar periodicamente a borracha de vedação da tampa da caixa quanto as condições, por exemplo, rompida, ressecada, amassada, mal posicionada e caso necessário efetuar sua substituição. Assegurando que não haja condições de entrada de umidade pela junta da tampa da caixa.

ANEXO IV - PROTOCOLO MODBUS

CARACTERÍSTICA

A comunicação baseada no protocolo MODBUS possibilita a conexão com até 247 módulos numa linha RS-485. Especificações:

- Baud Rate = 9600 bps
- Parity = nenhuma
- Stop Bit = 2
- Data Bit = 8
- RTU (Remote Terminal Unit) Modo de transmissão no qual os dados são transmitidos como caracteres de 8 bits.

A interface de comunicação é do padrão RS-485, a dois fios, half-duplex, baudrate de 9600, 1 start bit, 8 bits de dados, 2 stop bits e sem paridade.

Apenas o master pode começar um diálogo com os slaves, sendo este diálogo do tipo question/reply (endereço de apenas um slave) ou endereçando a mensagem para todos os slaves (endereço 0 = broadcast) sem obter um reply.

No protocolo MODBUS, o instrumento sai de fábrica apenas parametrizado de acordo com o medidor de vazão, ficando a cargo do usuário definir um endereço na rede para o dispositivo que vai de 1 até 247.

ALGORITMO

Uma mensagem é iniciada com um intervalo de silêncio de no mínimo 3,5 vezes a velocidade de comunicação de um caractere. Por exemplo, a 9600 bps, um caractere leva 1,15ms para ser transmitido (8N2 = 11 bits), portanto deve haver um silêncio na rede de 4 ms antes de uma mensagem ser transmitida. O número máximo de caracteres numa mensagem é 29.

A rede é monitorada continuamente pelo slave. Quando o 1º caractere é recebido, cada dispositivo decodifica-o para verificar se é o seu endereço. Se não for, o dispositivo deve aguardar que a rede fique em silêncio (sem transmissão) por 3,5 vezes a velocidade de comunicação de um caractere. Se o endereço for o do dispositivo, o mesmo deve receber o resto do frame. O fim do frame é indicado pelo intervalo de silêncio. Uma mensagem deve ser transmitida como uma cadeia continua de bytes.

Quando ocorrer erro de comunicação, uma retransmissão (retry) para o mesmo slave deve esperar no mínimo 3 segundos.

PROCEDIMENTO PARA CÁLCULO DO CRC

No modo RTU, é incluído na mensagem um error-checking baseado no método CRC que verifica se a mensagem recebida está correta.

O CRC contém dois bytes e é calculado pelo dispositivo transmissor, que anexa o CRC na mensagem.

O dispositivo receptor recalcula o CRC após a recepção da mensagem e compara o valor calculado com o valor recebido. Se os valores não são iguais, a mensagem é descartada.

O algoritmo para cálculo do CRC é:

- 1. Preencha um registro de 16 bits com 1s (0xFFFF)
- 2. Faça um OR EXCLUSIVE entre o registro (Isb) e o byte de transmissão
- 3. Desloque o registro obtido 1 bit à direita
- 4. Se o bit menos significativo do registro for igual a 1, faça um OR EXCLUSIVE com os seguintes 16 bits:

10100000	0000001
MSB	LSB

- 5. Repita os passos 3 e 4 oito vezes
- 6. Repita os passos 2,3,4 e 5 para todos os bytes da mensagem
- 7. O conteúdo final do registro é o valor do CRC que é transmitido no final da mensagem começando com o byte menos significativo.

FUNÇÃO MODBUS

A única função a disposição do PROBAT para o protocolo MODBUS é:

Read Holding Register (3)

Esta função permite ler os valores da vazão instantânea, totalizador e a unidade de engenharia, descritos na tabela abaixo:

Endereço	Registro	Descrição			
40001	Vazão	IEEE 32-bit fp 1a. parte (EXP, F0)			
40002 Vazão		IEEE 32-bit fp 2a. parte (F1,F2)			
40003	Totalização	signed long 1a. parte (F0, F1)			
40004	Totalização	signed long 2a. parte (F2, F3)			
40005	Unidade da Vazão inst.	unsigned int 16-bit (LSB,MSB)			
40006	Unidade do totalizador	unsigned int 16-bit (LSB,MSB)			

	1		
Código registros 40005	Unidade Vazão Inst.		
1	l/s		
2 3 4 5 6 7 8	l/min		
3	l/h		
4	m³/s		
5	m³/min		
6	m³/h		
7	ml/s		
8	ml/min		
9	ml/h		
10	gal/s		
11	gal/min		
12	galão/h		
13	ft³/s		
14	ft³/min		
15	ft³/h		
16	kg/s		
17	kg/min		
18	kg/h		
19	ton/s		
20	ton/min		
21	ton/h		
22	lib/s		
23	lib/min		
24	lib/h		
25	oz/s		
26	oz/min		
27	oz/h		

Código registros 40006	Unidade Totalizador		
1	litro		
2	m³		
3	mililitro		
4	galão		
5	ft³		
6	kg		
7	ton		
8	lib		
9	OZ		

Observe que para cada registro temos dois bytes. Os frames desta função para o master e slave são

			MASTER			
Endereço do Slave	0x03	0x00	0x02	0x00	0x02	CRC 8bit – 8bit

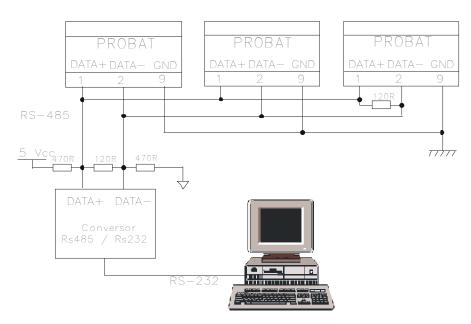
O registro inicial para ler é obtido removendo o indicativo (número 4) e subtraindo o resultado por 1. No exemplo, o registro 40003 (decimal) é transmitido como 0x0002 (hexadecimal): 40003 = 0003 = (0003 - 1) = 0002 = 0x0002 hexadecimal.

			SLA	AVE			
Endereço	0x03	0x04	0x44	0x89	0x80	0x00	CRC
do Slave							8bit – 8bit

O registro byte count é igual ao total de registros para ler vezes 2, pois cada registro possui 2 bytes. No exemplo anterior o master pediu uma leitura dos registros referentes ao Totalizador (40003 e 40004) e obteve como resposta o valor 0x00808944. Convertendo este valor para decimal temos que Totalizador = 8423748.

RECOMENDAÇÕES

Utilizar cabo par trançado 2x24 AWG com blindagem e impedância característica de 120R.


Conectar dois resistores de terminação de 120R em cada extremidade, ou seja, um na saída do conversor e outro no último instrumento instalado na rede. Conectar dois resistores de polarização de 470R utilizando fonte externa de 5 VCC conforme diagrama da ilustração anterior.

Caso a opção seja a não utilização dos resistores de polarização, eliminar também os resistores de terminação. É importante ressaltar que isto implicará em perda da qualidade do sinal de comunicação, podendo inclusive ocasionar falhas na comunicação.

Conectar o terra dos instrumentos utilizando um dos fios disponíveis do cabo e conecte apenas uma das pontas deste fio ao terra da instalação. Não deve ser utilizada a blindagem do cabo para conectar o terra dos instrumentos.

Conectar uma das pontas da blindagem ao terra de instalação.

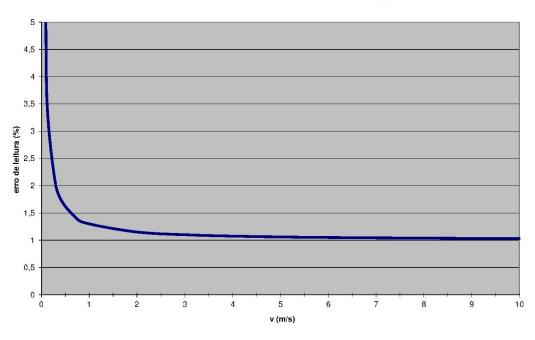
Acima de 32 instrumentos ou distância superior a 1000 metros, deve ser utilizado um amplificador de sinal. Para cada amplificador de sinal instalado, será necessário adicionar os resistores de terminação e polarização conforme diagrama abaixo.

ANEXO V - AUTONOMIA DA BATERIA

Abaixo temos a tabela de autonomia das baterias com relação ao intervalo entre excitações das bobinas do medidor.

Intervalo	Duração das baterias			
Excitação	Medidor com 3 baterias de litio de 16,5A			
Segundos	Dias	Meses	Anos	
1	161	5	0,4	
2	465	15	1,2	
5	748	24	2,0	
10	1092	36	2,9	
20	1516	50	4,1	
30	1768	58	4,8	
40	1935	64	5,3	
60	2142	71	5,9	

As condições dos testes foram:


- As saídas de pulsos e frequência desabilitadas;
- Comunicação serial habilitada para 1 leitura de dados por minuto;

O valor a ser configurado como intervalo de excitação depende das condições da vazão de processo. Em processos em que a taxa de variação da vazão é baixa pode-se utilizar um intervalo de excitação maior assim economizando a bateria, caso o processo tenha uma taxa de variação de vazão maior recomenda-se utilizar um tempo de excitação menor.

ANEXO VI – CURVA DE PERFORMANCE

Curva de desempenho do PROBAT utilizando o medidor de vazão série VMS nas condições de referência.

Curva de performance dos medidores de vazão eletromagnética

Exatidão:

±1% de leitura ± 3 mm/s

Condições de referência:

Produto:

Condutividade do produto:

Temperatura ambiente:

Tempo de aquecimento:

Trecho reto antes / depois:

água de 12 a 31°C maior que 150μS/cm 20 a 25°C

1 hora

10 DN / 5 DN

DN = diâmetro nominal

ANEXO VII - RESOLVENDO PROBLEMAS

Esta seção explica como resolver problemas com o medidor baseandose em alguns sintomas visuais. Assume-se que você tenha lido as seções anteriores deste manual e que já esteja familiarizado com a operação do equipamento.

Nesta tabela estão apresentados os problemas mais comuns e suas possíveis soluções.

SINTOMAS	PROVÁVEIS CAUSAS	SOLUÇÃO	
	Eletrodos cobertos por substância isolante	Limpe os eletrodos	
Indicação é	Medidor não está preenchido completamente com líquido ou linha de fluxo vazia	Preencha o medidor / linha de fluxo com líquido ou mude a instalação do medidor	
instável	Aterramento incorreto está permitindo efeitos do ruído no sinal	Aterre corretamente o instrumento	
	Bolhas de ar emperradas no medidor	Providencie uma abertura para respiro ou mude a instalação do medidor	
	Cabo desconectado	Verificar as conexões	
Há vazão mais a indicação é "0"	Cabo da bobina e eletrodo invertidos	Verificar os cabos da bobina e eletrodo	
ilidicação e o	Valor do Cut-off programado incorreto	Programar cut-off = 0	
Medição imprecisa	Medidor não está preenchido completamente com líquido ou linha de fluxo vazia	Preencha o medidor / linha de fluxo com líquido ou mude a instalação do medidor	
	Condutividade do fluido invalida	Verificar especificação do medidor	
Display não liga (apagado) Bateria descarregada		Trocar bateria	
	Linha sem fluxo ou infiltração de água no	Válvulas fechadas, bomba desligada.	
Indicação não varia	conversor	Vedação do medidor inadequada	
	Interligações entre módulos incompletas	Corrigir eventual mau contato	

11 CERTIFICADO DE GARANTIA

Este equipamento, Computador de Vazão,

Modelo: PROBAT
N° de série:
É garantido contra defeitos de mão de obra e material pelo prazo de 365 dias da data de entrega. Esta garantia será invalidada quando, a critério de julgamento da Incontrol, o equipamento tiver sido submetido a abusos ou manuseios impróprios. Quando o reparo, dentro da garantia, for necessário, o usuário deverá remeter o equipamento à fábrica ou reposto, ficando as despesas de seguro e frete por conta e risco do usuário.
Data de Entrega:/